Sunday, 14 May 2017

Was Ist Gleit Durchschnitt Methode Prognose


Moving Average Forecasting. Introduction Wie Sie vielleicht erraten, wir sind auf der Suche nach einigen der primitivsten Ansätze zur Prognose Aber hoffentlich sind diese zumindest eine lohnende Einführung in einige der Computing-Fragen im Zusammenhang mit der Umsetzung von Prognosen in Kalkulationstabellen. In diesem Sinne werden wir weiter vorbei Beginnend am Anfang und beginnen mit Moving Average Prognosen zu arbeiten. Moving Average Prognosen Jeder ist vertraut mit gleitenden durchschnittlichen Prognosen unabhängig davon, ob sie glauben, sie sind alle College-Studenten tun sie die ganze Zeit Denken Sie an Ihre Testergebnisse in einem Kurs, wo Sie gehen werden Haben vier Tests während des Semesters Lassen Sie Sie davon ausgehen, Sie haben eine 85 auf Ihrem ersten Test. Was würden Sie vorhersagen, für Ihre zweite Test-Score. Was denkst du, dein Lehrer würde für Ihre nächste Test-Score vorauszusagen. Was denkst du, deine Freunde können voraussagen Für Ihre nächste Test-Score. Was denkst du, deine Eltern könnten für Ihre nächste Test-Score prognostizieren. Um trotz aller Blabbing können Sie tun, um Ihre fr Iend und Eltern, sie und dein Lehrer sind sehr wahrscheinlich zu erwarten, dass du etwas in der Gegend von 85 bekommst, die du gerade bekommen hast. Nun, jetzt gehts an, dass du trotz deiner Selbstbeförderung zu deinen Freunden dich selbst überschätzst Und die Zahl, die Sie weniger für den zweiten Test studieren können und so erhalten Sie eine 73.Now, was sind alle betroffenen und unbeteiligten gehen zu antizipieren Sie werden auf Ihrem dritten Test Es gibt zwei sehr wahrscheinlich Ansätze für sie, um eine Schätzung unabhängig von zu entwickeln Ob sie es mit Ihnen teilen werden. Sie können sich selbst sagen, dieser Kerl ist immer bläst Rauch über seine smarts Er wird zu bekommen 73, wenn er Glück hat. Maybe die Eltern werden versuchen, mehr unterstützen und sagen, Nun, so Weit hast du eine 85 und eine 73 bekommen, also vielleicht solltest du auf eine 85 73 2 79 steigen. Ich weiß es nicht, vielleicht, wenn du weniger feiern wolltest und den Wiesel über den ganzen Platz wedelnd und wenn du anfingst zu tun Viel mehr studieren könnte man eine höhere score. Both von diesen Schätzungen sind tatsächlich Ly gleitende durchschnittliche Prognosen. Der erste ist mit nur Ihre jüngsten Score zu prognostizieren Ihre zukünftige Leistung Dies wird als eine gleitende durchschnittliche Prognose mit einer Periode von Daten. Die zweite ist auch eine gleitende durchschnittliche Prognose, aber mit zwei Perioden von data. Let s annehmen Dass all diese Leute, die auf deinem großen Verstand zerschlagen sind, dich irgendwie verärgert haben und du entscheidest, den dritten Test aus deinen eigenen Gründen gut zu machen und eine höhere Punktzahl vor deinen Verbündeten zu setzen Du nimmst den Test und dein Ergebnis ist eigentlich ein 89 Jeder, auch dich selbst, ist beeindruckt. So jetzt hast du die abschließende Prüfung des Semesters kommen und wie üblich fühlst du die Notwendigkeit, alle zu machen, die ihre Vorhersagen darüber machen, wie du bei dem letzten Test machst. Nun, hoffentlich sehst du das Pattern. Now, hoffentlich können Sie das Muster sehen, was Sie glauben, ist die genaueste. Whistle Während wir arbeiten Jetzt kehren wir zu unserer neuen Reinigungsfirma, die von Ihrer entfremdeten Halbschwester namens Whistle während wir arbeiten Sie haben einige vergangene Verkaufsdaten Vertreten durch den folgenden Abschnitt aus einer Kalkulationstabelle Wir stellen zunächst die Daten für eine dreistellige gleitende durchschnittliche Prognose dar. Der Eintrag für Zelle C6 sollte sein. Jetzt kannst du diese Zellformel in die anderen Zellen C7 bis C11 kopieren. Notice, wie sich der Durchschnitt bewegt Über die jüngsten historischen Daten, sondern nutzt genau die drei letzten Perioden für jede Vorhersage Sie sollten auch bemerken, dass wir nicht wirklich brauchen, um die Vorhersagen für die vergangenen Perioden zu machen, um unsere jüngsten Vorhersage zu entwickeln Dies ist definitiv anders als die Exponentielle Glättung Modell I ve enthalten die Vergangenheit Vorhersagen, weil wir sie in der nächsten Web-Seite verwenden, um Vorhersage Gültigkeit zu messen. Jetzt möchte ich die analogen Ergebnisse für eine zwei Periode gleitende durchschnittliche Prognose zu präsentieren. Der Eintrag für Zelle C5 sollte. Jetzt Sie Kann diese Zellformel auf die anderen Zellen C6 bis C11 kopieren. Notice, wie jetzt nur die beiden letzten Stücke historischer Daten für jede Vorhersage verwendet werden D die vergangenen Vorhersagen für illustrative Zwecke und für die spätere Verwendung in der Prognosevalidierung. Einige andere Dinge, die von Bedeutung zu bemerken sind. Für eine m-Periode gleitende durchschnittliche Prognose nur die m neuesten Datenwerte verwendet werden, um die Vorhersage Nichts anderes ist notwendig. Für eine m-Periode gleitende durchschnittliche Prognose, wenn Vergangenheit Vorhersagen, beachten Sie, dass die erste Vorhersage tritt in der Periode m 1.Both von diesen Fragen wird sehr wichtig sein, wenn wir unseren Code entwickeln. Entwicklung der Moving Average Function Jetzt müssen wir entwickeln Der Code für die gleitende durchschnittliche Prognose, die flexibler genutzt werden kann Der Code folgt Beachten Sie, dass die Eingaben für die Anzahl der Perioden, die Sie in der Prognose verwenden möchten, und das Array von historischen Werten Sie können es speichern, was auch immer Arbeitsmappe Sie wollen. Funktion MovingAverage Historical, NumberOfPeriods Als Single Declaring und Initialisierung von Variablen Dim Item als Variant Dim Zähler als Integer Dim Accumulation als Single Dim HistoricalSize als Integer. Initialisierung von Variablen Zähler 1 Akkumulation 0. Ermittlung der Größe des Historischen Arrays HistoricalSize. For Counter 1 Zu NumberOfPeriods. Akkumulation der passenden Anzahl der letzten bisher beobachteten Werte. Accumulation Accumulation Historical HistoricalSize - NumberOfPeriods Counter. MovingAverage Accumulation NumberOfPeriods. The Code wird in der Klasse erklärt Sie wollen die Funktion auf der Tabelle zu positionieren, so dass das Ergebnis der Berechnung erscheint, wo es sollte Wie die folgenden. Moving Durchschnitt. Mean der Zeitreihe Daten Beobachtungen gleichermaßen beabstandet in der Zeit von mehreren aufeinander folgenden Perioden Angerufen bewegt sich, weil es kontinuierlich neu berechnet wird, wie neue Daten verfügbar wird, geht es durch das Fallenlassen der frühesten Wert und das Hinzufügen der neuesten Wert Zum Beispiel die Gleitender Durchschnitt von sechsmonatigen Verkäufen kann berechnet werden, indem man den Durchschnitt des Umsatzes von Januar bis Juni, dann der Durchschnitt der Verkäufe von Februar bis Juli, dann von März bis August, und so weiter Moving Durchschnitte 1 reduzieren die Wirkung von temporären Variationen in Daten, 2 verbessern die Anpassung der Daten an eine Zeile ein Prozess namens Glättung zu zeigen, die Daten s Trend mehr c Learly, und 3 markieren Sie jeden Wert über oder unter dem Trend. Wenn Sie berechnen etwas mit sehr hoher Varianz das Beste, was Sie in der Lage zu tun sind, ist herauszufinden, die gleitenden Durchschnitt. Ich wollte wissen, was der gleitende Durchschnitt war von den Daten, So würde ich ein besseres Verständnis davon haben, wie wir es taten. Wenn Sie versuchen, herauszufinden, einige Zahlen, die sich ändern oft das Beste, was Sie tun können, ist berechnen die gleitenden Durchschnitt. Box Jenkins BJ Modelle. Weighted Moving Average Prognose Methoden Vor-und Nachteile. Hallo, LIEBE Ihre Post Wurde, ob Sie weiter ausarbeiten könnten Wir verwenden SAP In es gibt es eine Auswahl, die Sie wählen können, bevor Sie Ihre Prognose mit der Initialisierung ausführen. Wenn Sie diese Option markieren, erhalten Sie ein Prognoseergebnis, wenn Sie die Prognose erneut ausführen Gleichen Zeitraum, und nicht überprüfen Initialisierung der Ergebnis Änderungen Ich kann nicht herausfinden, was diese Initialisierung ist, ich meine, mathmatisch Welche Prognose Ergebnis ist am besten zu speichern und verwenden zum Beispiel Die Änderungen zwischen den beiden sind nicht in der Vorhersage D Menge, aber in der MAD und Fehler, Sicherheitsbestand und ROP-Mengen Nicht sicher, wenn Sie SAP. hi Dank für die Erklärung so effeciently seine zu gd danke wieder Jaspreet. Leave eine Antwort Abbrechen Antwort. About Shmula. Pete Abilla ist der Gründer von Shmula Und der Charakter, Kanban Cody Er hat Unternehmen wie Amazon, Zappos, eBay, Backcountry geholfen, und andere reduzieren Kosten und verbessern die Kundenerfahrung Er tut dies durch eine systematische Methode zur Identifizierung von Schmerzen Punkte, die Auswirkungen auf den Kunden und das Geschäft, und fördert breit Teilnahme von den Unternehmen Associates, um ihre eigenen Prozesse zu verbessern Diese Website ist eine Sammlung seiner Erfahrungen, die er mit Ihnen teilen möchte. Beginnen Sie mit kostenlosen Downloads.

No comments:

Post a Comment